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1
METHOD AND SYSTEM FOR OPTICALLY
EVALUATING PROXIMITY TO THE
INFERIOR ALVEOLAR NERVE IN SITU

CROSS REFERENCE TO RELATED
APPLICATION

This application claims priority of U.S. Provisional Patent
Application Ser. No. 61/477,787 filed on Apr. 21, 2011 and
entitled “METHOD AND SYSTEM FOR OPTICALLY
EVALUATING PROXIMITY TO THE INFERIOR ALVEO-
LAR NERVE IN SITU”, the specification of which is hereby
incorporated by reference.

TECHNICAL FIELD

The invention relates to methods and systems for evaluat-
ing proximity to a target, more specifically, for evaluating
proximity to a nerve.

BACKGROUND OF THE ART

Dental implants are a widely accepted treatment for the
partially or completely edentulous patient. Dental implants
are the fastest growing procedure in dentistry today. It is a 1
billion dollar industry in the USA. Dental implants offer a
suitable alternative to mucosal adhering dentures and allow a
more natural option for the patient. Implants have a high
success rate when given proper care and when post-surgical
instructions are followed. Dental implants can be in the form
of a single tooth replacement, or can replace a series or an
entire set of teeth. The basic implant procedure involves drill-
ing a channel in the mandible where an artificial root is
surgically inserted. A dental prosthesis is then placed onto the
frame of the artificial root. Within a few months of recovery,
the patient should have a fully integrated and functional pros-
thesis.

Implant procedures are not without complications. The
goal of an implant procedure is to attain a successful level of
osseointegration. Osseointegration is defined as the direct
anchorage of an implant by the formation of bony tissue
around the implant without the growth of fibrous tissue at the
bone-implant interface. Implants surrounded with fibrous tis-
sue show mobility when a load is applied. The successfully
osseointegrated implant shows no mobility when loaded.
Other major factors for the successful implant depend mainly
on the type of jaw treated, the density of the bone, and the
length of the implant. Implant length is the depth created by
the surgeon upon drilling a channel in the mandible. Short
implants have a length of less than 10 mm and are noted to
have larger failure rates. Hence the need to create sufficient
length for successful osseointegration of implants within the
mandible is a priority.

However, the drilling of a large implant channel within the
mandible carries a risk of breaching an intraosseous canal
which encloses the inferior alveolar nerve (IAN). Disruption
of the IAN can lead to loss of sensation in the anterior man-
dible area, such as paresthesia or numbness to the lower lip,
due to the disruption of the mental nerve, which is the termi-
nal branch of the IAN and is the neural bundle serving this
area. The loss of sensation for the patient is certainly unde-
sirable.

The reported incidence of nerve injury from implant place-
ment in the literature is highly variable and ranges depending
on the study from 0% to as high as 44% (Misch and Resnik
Implant Dentistry 2010; 19:378-386). A survey at the Misch
international institute indicated that 73% of dentists have
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encountered neurosensory impairment within their practice.
To help prevent nerve injury, patients can be subjected to CT
scans which are costly and also involve radiation. The stan-
dard error for a CT scan is still in the range of 1.7 mm. This
measurement error can result in nerve damage.

There is thus a need to develop a surgical drill which is able
to detect the proximity and/or location of the IAN in the
mandible, preferably during implant procedures. The sensor
device should allow the drill to approach closely, but not
impair or damage the IAN within an acceptable error limit of
the intraosseous canal. Hence, a system that automatically
terminates drill action when in close range of the IAN would
be most desirable.

SUMMARY

According to one broad aspect of the present invention,
there is provided a spectral absorption probe system for evalu-
ating proximity to an artery, comprising a light source for
generating excitation light having a wavelength adapted for
absorption by blood chromophores, an excitation optical fiber
to bring the excitation light near the artery and a collection
optical fiber for capturing back-scattered light from the artery.
The spectral absorption probe system comprises a light detec-
tor operatively connected to the collection optical fiber and a
signal processor operatively connected to the light detector
for determining a distance to the artery based on the back-
scattered light and on Beer-Lambert law of light absorption
using a value for surrounding tissue attenuation coefficient
(pefd).

In one embodiment, the spectral absorption probe system
further comprises a biocompatible metallic rod surrounding
the excitation optical fiber and the collection optical fiber.

In one embodiment, the excitation optical fiber and the
collection optical fiber are provided in a single double-clad
optical fiber with a fiber core of the double-clad optical fiber
bringing the excitation light near the artery and a first clad of
the double-clad optical fiber capturing the back-scattered
light from the artery.

In one embodiment, the probe system is fibered and inte-
grated within a hollow core of a drill bit.

In one embodiment, an operating depth range of the probe
system is comprised between 1 mm and 5 mm.

In one embodiment, the light source is selected from a
group consisting of a LED, a laser and a set of light source
units.

In a further embodiment, the wavelength of the light source
is comprised between 650 nm and 900 nm.

In one embodiment, the spectral absorption probe system
further comprises an additional light source having a wave-
length adapted for absorption by blood chromophores, the
wavelengths of the light source and of the additional light
source being each comprised between 650 nm and 900 nm.

In one embodiment, the light detector is selected from a
group consisting of a photodiode, an avalanche photodiode
(APD), a photomultiplier tube (PMT) and a camera.

In one embodiment, the spectral absorption probe system
further comprises a calibration unit having a pulse oxymeter
for monitoring oxygen saturation levels to maintain an inline
calibration of arterial blood absorption properties.

In one embodiment, the surrounding tissue attenuation
coefficient (peff) is determined according to absorption and
scattering in surrounding tissue of a calibration excitation
signal.

In one embodiment, the signal processor comprises a lock-
in amplifier and a heterodyning processing circuit connected
thereto.
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In one embodiment, the light detector is AC-coupled to the
signal processor.

In another embodiment, the excitation optical fiber and the
collection optical fiber are separated from each other and
extend angularly.

In a further embodiment, a single one of the excitation
optical fiber and the collection optical fiber is integrated
within a hollow core of a drill bit.

According to another broad aspect of the present invention,
there is provided a low coherence interferometry probe sys-
tem for evaluating proximity to a tissue layer, comprising a
low coherence light source for generating low coherence
excitation light, an excitation optical fiber to bring the low
coherence excitation light near the tissue layer and a collec-
tion optical fiber for capturing back-scattered light from the
tissue layer. The low coherence interferometry probe system
comprises a low coherence interferometry sub-system opera-
tively connected to the excitation optical fiber and the collec-
tion optical fiber and having a beam splitter and a reference
mirror. The low coherence interferometry probe system com-
prises a digital signal processor operatively connected to the
low coherence interferometry sub-system for evaluating a
distance to the tissue layer based on the back-scattered light
received by the collection optical fiber.

In one embodiment, the tissue layer is selected from a
group consisting of a canal wall, an artery, a nerve, a neu-
rovascular bundle and a sinus floor.

In one embodiment, the probe system is fibered and inte-
grated within a hollow core of a drill bit.

In one embodiment, the low coherence light source is
selected from a group consisting of a superluminescent LED,
a pulsed laser and a frequency-swept laser source.

In one embodiment, an operating depth range of the probe
system is comprised between 1 mm and 5 mm.

In one embodiment, the excitation optical fiber and the
collection optical fiber are both embedded in a single-mode
optical fiber.

In another embodiment, the excitation optical fiber and the
collection optical fiber are provided in a single double-clad
optical fiber having a core acting as an excitation channel, an
inner clad acting as a collection channel and an outer clad
surrounding the inner cladding.

In one embodiment, the probe system is operated in
A-mode.

In another embodiment, the probe system comprises a
forward-looking transverse scanner enabling B-mode imag-
ing.

In a further embodiment, the excitation optical fiber and the
collection optical fiber are both embedded in a rotating bev-
eled double-clad optical fiber having a core acting as an
excitation channel, an inner cladding acting as a collection
channel and an outer cladding surrounding the inner cladding,
the probe system being operated in a B-mode providing coni-
cal imaging.

In one embodiment, the probe system further comprises at
least one of a Doppler OCT unit for performing Doppler
measurements and a speckle variance OCT unit.

According to another broad aspect of the present invention,
there is provided a spectral absorption and low coherence
interferometry probe system for evaluating proximity to a
tissue layer, comprising a light source for generating excita-
tion light having at least one wavelength adapted for absorp-
tion by blood chromophores and low coherence, an excitation
optical fiber to bring the excitation light near the tissue layer
and a collection optical fiber for capturing back-scattered
light from the tissue layer. The probe system comprises a light
detector operatively connected to the collection optical fiber
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and a digital signal processor operatively connected to the
light detector for determining a distance to the tissue layer
based on the back-scattered light and on Beer-Lambert law of
light absorption using a value for surrounding tissue attenu-
ation coefficient (ueff). The probe system comprises a low
coherence interferometry sub-system operatively connected
to the excitation optical fiber and the collection optical fiber
and having a beam splitter and a reference mirror. The probe
system also comprises a signal processor operatively con-
nected to the low coherence interferometry sub-system for
evaluating a distance to the tissue layer based on the back-
scattered light received by the collection optical fiber.

In one embodiment, the excitation optical fiber comprises
a single mode fiber and the collection optical fiber comprises
a single mode fiber for OCT mode light collection and a
multimode fiber for spectral absorption mode light collection.

In a further embodiment, the probe system comprises a
forward-looking transverse scanner enabling B-mode imag-
ing.

According to another broad aspect of the present invention,
there is provided a spectral absorption probe method for
evaluating proximity to an artery, comprising: generating an
excitation light having a wavelength adapted for absorption
by blood chromophores; bringing the excitation light near the
artery; capturing back-scattered light from the artery; and
processing the back-scattered light from the artery for deter-
mining a distance to the artery based on Beer-Lambert law of
light absorption using a value for surrounding tissue attenu-
ation coefficient (ueft).

In one embodiment, the method is used for evaluating
proximity to an inferior alveolar nerve in situ.

In one embodiment, the method further comprises moni-
toring oxygen saturation levels to maintain an inline calibra-
tion of arterial blood absorption properties.

In one embodiment, the method further comprises deter-
mining the surrounding tissue attenuation coefficient (ueff)
according to absorption and scattering in surrounding tissue
of a calibration excitation signal.

In one embodiment, the back-scattered light is captured
angularly and at a given distance with respect to the brought
excitation light.

In one embodiment, the method further comprises using a
vascular contrast agent.

According to another broad aspect of the present invention,
there is provided a low coherence interferometry probe
method for evaluating proximity to atissue layer, comprising:
generating a low coherence excitation light; bringing the low
coherence excitation light near the tissue layer; capturing
back-scattered light from the tissue layer; performing inter-
ferometry between the low coherence excitation light and the
back-scattered light for providing an interference signal; and
processing the interference signal for evaluating a distance to
the tissue layer.

In one embodiment, the method is used for evaluating
proximity to an inferior alveolar nerve in situ.

In one embodiment, the probe method is operated accord-
ing to A-mode.

In another embodiment, the method further comprises for-
ward-looking transverse scanning of the tissue layer for
enabling B-mode imaging.

In one embodiment, the method further comprises using an
optical clearing agent at a probing site.

According to another broad aspect of the present invention,
there is provided a spectral absorption and low coherence
interferometry probe method for evaluating proximity to a
tissue layer, comprising: generating an excitation light having
atleast one wavelength adapted for absorption by blood chro-
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mophores and low coherence; bringing the excitation light
near the tissue layer; capturing back-scattered light from the
tissue layer; processing the back-scattered light for determin-
ing a first distance to the tissue layer based on Beer-Lambert
law of light absorption using a value for surrounding tissue
attenuation coefficient (peff); performing interferometry
between the low coherence excitation light and the back-
scattered light for providing an interference signal; and pro-
cessing the interference signal for evaluating a second dis-
tance to the tissue layer.

BRIEF DESCRIPTION OF THE DRAWINGS

Having thus generally described the nature of the inven-
tion, reference will now be made to the accompanying draw-
ings, showing by way of illustration a preferred embodiment
thereof and in which:

FIG. 1 is a sagittal section of a mandible showing the
inferior alveolar nerve (IAN) positioned directly underneath
the molar teeth;

FIG. 2 is a sagittal section of the inferior alveolar nerve
(IAN) positioned at the bottom of the mandible;

FIG. 3 (Prior Art) is a diagram of a standard time-domain
Optical Coherence Tomography setup of the prior art;

FIG. 4A (Prior Art) is a diagram of a spatially-encoded
Fourier-domain OCT system (SEFD-OCT);

FIG. 4B (Prior Art) is a diagram of a frequency-swept-
source-based OCT system, or time-encoded Fourier-Domain
OCT system (TEFD-OCT);

FIG. 5 is a schematics of a low coherence interferometry
probe system for evaluating proximity to a tissue layer,
according to one embodiment.

FIG. 6 is a concept schematics of a drill-integrated IAN
sensor based on the NIR spectral absorption technique,
according to one embodiment;

FIG. 7 is a schematics of a spectral absorption probe sys-
tem for evaluating proximity to an artery, according to one
embodiment.

FIG. 8 is a graph illustrating impact of propagation in a
turbid medium such as biological tissue on an intensity-
modulated light beam;

FIG. 9 is a schematics of a heterodyne detection configu-
ration for a IAN sensor, according to one embodiment;

FIG.10A is a schematics of an embodiment of a standalone
IAN proximity sensor handpiece, according to a spectral
absorption configuration;

FIG. 10B is a schematics of another embodiment of a
standalone AN proximity sensor handpiece, according to a
OCT-based, single fiber configuration;

FIG. 11 is a schematics showing a disjointed spectral
absorption IAN sensor configuration, according to one
embodiment;

FIG. 12 is a diagram of a double-clad optical fiber-based
IAN sensor handpiece design, according to one embodiment;

FIG. 13 is a diagram of a spectral absorption-based IAN
sensor apparatus where a pulse oxymeter is used, according to
one embodiment;

FIG. 14 is a schematics of another IAN sensor using a
conical scanning principle, according to another embodi-
ment;

FIG. 15A is a diagram of a drill-integrated IAN sensor
using an optical fiber rotary joint, according to one embodi-
ment;

FIG. 15B is a diagram of a drill-integrated IAN sensor
using a non-contact optical coupling, according to another
embodiment;
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FIG. 16 is a diagram of a one dimensional model of a
trabecular bone, according to one embodiment.

FIG. 17 is a flow chart of a probe method for evaluating
proximity to a tissue layer, according to one embodiment.

FIG. 18 is a flow chart of a probe method for evaluating
proximity to an artery, according to one embodiment.

It will be noted that throughout the appended drawings,
like features are identified by like reference numerals.

DETAILED DESCRIPTION

Anatomy Background

Referring to FIGS. 1 and 2 which show Sagittal sections of
amandible 10, the inferior alveolar nerve 12 (IAN)is a branch
of the mandibular nerve, which stems from the trigeminal
nerve system. The IAN 12 enters an intraosseous canal
through the mandibular foramen in the posterior portion of
the mandible. The nerve continues its path within the man-
dible 10 and then exits through the mental foramen. Through-
out the length of the osseous canal, the IAN 12 is closely
associated with the inferior alveolar artery and both structures
are covered in a tough sheath of connective tissue. The diam-
eter of the entire bundle varies between patients but averages
at 2.53+0.29 mm [C. D. Morris et al., J. Oral Maxillo. Surg.,
68:2833-2836, 2010].

The intraosseous canal is a hollow channel and in most
cases has borders with defined walls which may be consistent
throughout the length of the canal. The diameter of this canal
is known to be 2.0 to 2.6 mm. The canal walls may either be
composed of cortical bone, or in lesser frequency, may be
continuous and uniform with the surrounding trabecular
bone. Many patients have canals which abruptly become
uniform and continuous with surrounding cancellous bone
within proximity of the mental foramen. Although the
intraosseous canal is present in many patients, it is not a
consistent feature within the mandibles of every individual.
Dissection studies show that cortical walls and distinct
osseous canals within mandibles are not always present.
Some specimens of IAN were shown to travel the trabecular
marrow spaces without any defined canal present.

The position of the IAN 12 within the mandible 10 is highly
variable. In one dissection study, the position of the IAN
varied in position from the sub-dental portion below the
molar roots (See FIG. 1), to an inferior position near the
bottom ridge of the mandible 10 (See FIG. 2). A feature which
was not frequent, but was observed, was the splitting of the
IAN bundle into diffuse branches without a defined
intraosseous canal.

Current IAN Location Methods

The general imaging methods currently used by surgeons
to assess the position of the AN are Panoramic X-ray, Com-
puted Tomography (CT) scan, and Microradiograph (MR)
imaging. As some patients may lack an osseous canal and an
IAN bundle altogether, pre-operative imaging is imperative.
X-rays are usually taken in a panoramic fashion, encircling
the entire mandible. This presents a global view of the man-
dible and images potential implant placement sites. The limi-
tations of this technique are that it provides no information
about mandible thickness and suffers from a distortion factor
of'about 25%. A more modern approach to the imaging of the
mandible is the CT scan. This method is able to generate
over-lapping images through computer software programs.
However, for dental surgical purposes, only bone and calci-
fied structures are imaged by CT; the IAN and associated
non-osseous tissues are not. Thus the CT scan is limited for
patients without defined canal walls; locating the IAN on a
single cross section is difficult. Reformatted images of adja-
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cent parallel and perpendicular images must be taken and
used to assess the exact relative location of the IAN within the
mandible. Detailed X-ray imaging, or Mircoradiograph (MR)
imaging, is able to image and provide a notable contrast
between osseous and non-osseous tissues. When using MR,
the canal is visible in cross-sectional reformations exclusive
of the osseous tissue surrounding it. The drawback to using
MR imaging is that spatial distortions on MR images may not
give proper resolution for smaller distances. This is also true
for both CT and Panoramic scans, although the resolution for
both these techniques has been shown to be similar. Current
CT based technologies are expanding imaging possibilities
by integrating novel software and 3-D imaging methods.

The drawback for all these imaging methods, with the
exception of novel 3-D CT scanning methods, is that they are
not in real time and must be performed preoperatively before
the surgical procedure. These methods are also limited in
resolution (typ. £1.3 mm) and may not be able to properly
image diffuse IAN layouts for patients without a localized
IAN bundle. This adds much uncertainty and leaves the sur-
geon to estimate the exact locations of the IAN during sur-
gery. Thus, a technology which combines both the procedures
of drilling and localization of the IAN into a simultaneous
process has yet to be developed.

Machining of Bone and Present Drill Sensor Technology

In the process of dental implants, drilling is used to create
channels within the mandible for the placement of artificial
roots.

The drilling operation performed on the mandible must
traverse a cortical bone layer and into a cancellous bone mass.
As the drill continues forward, heat is generated at the apex of
the drill bit. Some of this heat is absorbed by the surrounding
bone, raising its temperature. An implication of temperature
rise and heat generation from machining bone is thermal
osteonecrosis. Irreversible thermal osteonecrosis occurs
when bone temperature reaches and exceeds 47° C. With
irreversible osteonecrosis, adequate osseointegration could
be inhibited, thus reducing the chances for a successful
implant. When drilling bone without external irrigation, tis-
sue temperatures can range from 31-56° C. An irrigation
system is included in most surgical drills for this purpose.
Water is injected through an orifice from the apex of the drill
bit into the immediate drilling site. This acts to cool the
drilling site, and functions to prevent thermal osteonecrosis.
For the contribution of heat generation from the drill itself, the
most important parameters are drill speed, feed rate and drill
diameter. Hence with irrigation, adjustment and control of
these parameters can help to reduce heat generation when
drilling in bone.

Currently, drill sensor technology is not aimed at discern-
ing the media situated at the drill-bone interface. Technology
is more focused on detecting and imaging wear on drill burs
and machinery. There exists drill detection systems aimed at
bone machining applications. A mechatronic system devel-
oped by Bouazza-Marouf and Ong [Ong, F. R., Bouazza-
Marouf, K.; 1999; The detection of drill bit break-through for
the enhancement of safety in mechatronic assisted ortho-
paedic drilling; MECHATRONICS 9: 565-588] is able to
discern drill break-through from inherent fluctuations in bone
structure when drilling long bones. This system is able to
detect differences in force through an electronic logic algo-
rithm. The drawback here is that a certain, constant force is
applied and the drill bit feed rate into the bone media is
constant. In practice, drilling with constant force and feed rate
would not be used due to variability in bony tissues within the
body and between patients. The mechatronic system was also
not able to discern latent non-osseous tissue. The application
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of this system for the purpose of long implant placement
within the mandible would not be desirable as bone break-
through is the arresting factor for this system.

Optical-Based In Situ Proximity IAN Sensor

Current surgery practice allows for an experienced dental
surgeon to drill the mandible down to a distance of 2 mm from
the IAN, without too much risk of damaging the nerve bundle.
As such, the proximity sensor operating range should be
within this 2 mm boundary, although a longer distance of
operation would be useful. At the same time, the axial reso-
Iution of the sensor should be as high as possible.

The first approach is based on Low Coherence Interferom-
etry (LCI). A LCI probe can be built to operate in A-mode (i.e.
point-scan only, no image). LCI presents similar results to
ultrasound echolocation and provides a high-resolution mea-
surement of the tissue layers structure based on back-scat-
tered light intensity from those layers. The measurements
being optical in nature, the axial resolution of this technique
is at least ten times better than with ultrasound, at the cost of
amuch lower depth penetration (typ. resolutions in ~10 pm at
maximal depths of ~1.5 mm, depending on tissues optical
absorption and scattering properties). The particular imaging
extension of this technique, i.e B-mode scanning, is known in
the art as Optical Coherence Tomography (OCT).

FIG. 3 shows an embodiment of a standard time-domain
LCI or OCT system 30 using a low coherence light source 32
(typically a superluminescent LED or pulsed laser) and an
interferometer configuration 34 for performing a longitudinal
scanning 36 and a lateral scanning 38. As illustrated, an
optical arrangement 40 is used for implementing the lateral
scanning 38 while an optical arrangement 42 comprising a
moving mirror 44 is used for implementing the longitudinal
scanning 36. A signal processor 46 may be used in conjunc-
tion with a computer 48 for signal processing purposes.
Newer designs, as the systems 50 and 52 shown in FIGS. 4A
and 4B respectively, involve detecting in the Fourier domain
or using frequency-swept light sources to disband with the
traditional time-pulsed requirement of the incident light
emission. The system 50 comprises a low coherence source
(LCS) 54, an interferometer sub-assembly 56 provided with a
beamsplitter (BS) 58 and a reference mirror (REF) 60. The
system 50 also comprises a diffraction grating (DG) 62 and a
camera (CAM) 64 for detecting light back-scattered by the
sample (SMP) 66. A digital signal processor (DSP) 68 is
operatively connected to the camera 64 for providing an OCT
image based on the back-scattered light. The system 52 of
FIG. 4B uses a swept source (SS) 72 in place of the low
coherence source 54 of FIG. 4A and a photodetector (PD) 70.

An A-Mode fibered LCI probe can be designed in a com-
pact form small enough to fit within a dental drill bit, accord-
ing to one embodiment. Tissue interfaces will appear as an
increase in the back-scattered signal intensity. Similarly, in an
alternative embodiment, a B-mode 2D image can be gener-
ated by building the LCI/OCT probe with an integrated for-
ward-looking proximal or distal scanner, as it should become
apparent to the skilled addressee. In the case of the IAN, an
interface signal will be generated either by the canal wall or
the nerve bundle itself and will be visible in real time to the
dental surgeon as long as the interface is within the penetra-
tion depth range of the instrument.

FIG. 5 illustrates a low coherence interferometry probe
system 100 for evaluating proximity to a tissue layer 102,
according to the above detailed technique and according to
one embodiment. The probe system 100 comprises a low
coherence light source 104 for generating low coherence
excitation light 106, an excitation optical fiber 108 to bring
the low coherence excitation light 106 near the tissue layer
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102 and a collection optical fiber 110 for capturing back-
scattered light from the tissue layer 102. The probe system
100 also comprises a low coherence interferometry sub-sys-
tem 112 operatively connected to the excitation optical fiber
108 and the collection optical fiber 110 and having a beam
splitter 114 and a reference mirror 116. A digital signal pro-
cessor 118 operatively connected to the low coherence inter-
ferometry sub-system 112 is used for evaluating a distance
120 to the tissue layer 102 based on the back-scattered light
received by the collection optical fiber 110.

FIG. 17 illustrates a low coherence interferometry probe
method for evaluating proximity to atissue layer, according to
one embodiment. According to processing step 1710, a low
coherence excitation light is generated. According to process-
ing step 1720, the low coherence excitation light is brought
near the tissue layer. According to step 1730, back-scattered
light from the tissue layer is captured. According to process-
ing step 1740, interferometry between the low coherence
excitation light and the back-scattered light is performed for
providing an interference signal. According to processing
step 1750, the interference signal is processed for evaluating
a distance to the tissue layer.

Experiments were conducted with a probe system 100 on a
post-mortem extracted human jawbone cut in such a way that
the LCI entry point surface made a wedge with the approxi-
mate location of the canal, thus providing increased depth of
the IAN interface with the entry point location. This approach
allows to evaluate the depth penetration of the technique. The
results indicate a probing range of about 1 mm within the test
conditions (ex vivo sample, wavelength of 1.32 pm). An
increase in wavelength should improve detection range as
tissue scattering decrease monotonically with wavelength.
However, one must also fine tune the wavelength so that it fits
between tissue absorption lines that are numerous in these
ranges due to tissue water content. Appropriate designs for
performing LCI/OCT systems seem to favor the use of fre-
quency-swept laser sources for state-of-the-art devices.
Availability of such light sources at 1.55 um is increasing and
development at 1.8 pm is ongoing. The skilled addressee will
nevertheless appreciate that other arrangements may be con-
sidered.

A second optical approach is to use the spectral absorption
properties of arterial blood and the blood flow dynamics
(change in blood volume due to the patient’s pulse) to mea-
sure the distance to this artery based on the Beer-Lambert law
of light absorption:

I=Ioexp(—pepd) [1]

where I and I, are the detected and incident light intensities,
respectively, d is the total propagation distance of the light
within tissues (the sensor will measure the distance s=d/2)
and p,is the attenuation coefficient of the medium in which
light propagation occurs. In the case of tissues, attenuation is
a combination of absorption and scattering of the photons at
the illumination wavelength and is tissue-type-dependent.

A first approximation model can provide an evaluation of
the order of magnitude of the return signal. The probing
device would operate from within the trabecular bone to
identify the artery from the IAN neurovascular bundle. Tra-
becular bone is a complex structure composed of cortical
bone and bone marrow arranged in “cells”, similar to a bee-
hive. Optically, this structure may be represented in a one
dimensional model 200 where three layers 202, 204, 206 are
stacked vertically, each representing cortical bone, bone mar-
row and arterial blood, as illustrated in FIG. 16. In this model,
the blood layer thickness varies over time in a periodic fash-
ion to represent the blood volume change in the arteries due to
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the cardiac cycle. The thickness of the bone and marrow
layers is dependent on the porosity of the trabecular structure.

Using this representation, the equations governing the opti-
cal propagation, based on the Beer-Lambert’s Law, are:

I=I, o~ IHmarrowdmarrowticorticaldeortical +HHEO 2 DAHBO2(D)]

@,

where 1 and d,. (x=marrow, cortical, HhO2) are the attenu-
ation coefficient and layer thickness of each of the three types
of'tissue involved. The marrow and cortical layer thicknesses
are related to the porosity of the trabecular structure O<p<1
such that:

dmarrow —px dto zal

3

where d,,,,/~d.,,.rowteorricas 18 the total thickness of tra-
becular bone between the light input and the arterial layer.
Because of blood flow and its properties, the HbO2 terms are
time-dependent. Indeed, the distance parameter d ;. will
change due to the volume variation occurring with pulsating
blood flow. In the proposed model 200, this is represented by
a harmonic variation of the thickness of the arterial layer:

2 porticar"1=P)X sy

5,02 =Ar1302-paserine 1+ 5 €05 2f1)) ),

where d;; 00 paserme 15 the average thickness of the layer,
0<A <1 is the maximum fractional thickness change due to
pulsating blood flow, t is time and f is the blood pulse fre-
quency in Hz.

The HbO?2 attenuation coefficient should also be consid-
ered a time-dependent value as it is related to blood oxygen-
ation levels in the patient, thus dependent on the proportions
of oxy- and deoxy-hemoglobin in arterial blood. In practice,
however, the variation of blood oxygenation will generally be
on a much longer time scale than the variations due to the
patient’s pulse. Strong and sudden variations of blood oxy-
genation are rare and indicative of a serious health condition
that is unlikely to be encountered in the normal operation of
the TAN sensor. Nevertheless, monitoring of blood oxygen-
ation with a pulse oxymeter is considered a good practice in
the utilization of such a sensor, if only as a check point for the
sensor’s calibration, as detailed below. For the sake of the
proposed model, the attenuation coefficient was however
assumed to be a constant.

Combining Equs. (2)-(4), the model was builtto provide an
order of magnitude for the optical signal intensity over time to
be expected from such an approach. The resulting output
optical power is described with:

I=Ioexp[~{P (narronHeorsicat) Heorricat} Frotar™
Werp0n@e502- basetine 1384 cos(2mft)] ).
The near infrared spectroscopy (NIRS) based sensor goal
is to measure the thickness d, ,,; of trabecular bone tissue
between the probe (or drill) tip and the neurovascular bundle
containing the IAN. In one embodiment, a lock-in amplifier
may be used to establish the magnitude of the oscillating
signal and circumvent the DC signal that is influenced by the
static trabecular tissue, as detailed below. In one embodiment,
a typical method is to use the root-mean square value of the
AC signal:

IRMS:\/< P ;

where:

(©),

1/f 7
Py = f 1Pt 0
0
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Solving Equ. (6) from (5) and (7) and using a Taylor expan-
sion for the exponential function up to the second degree in
the integral leads to:

1 8
Truts = [\/7 10ﬁ,/ 1+B2A2 ]e*’“roral*‘*; ®
B = 111502 A1p02-baseline;
K =pu — Heortical) + 1
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With such a model, assuming an input of 10 mW of optical
power at the proper wavelength, an output signal of approxi-
mately 0.07 mW would be produced.

FIG. 7 shows a spectral absorption probe system 300 for
evaluating proximity to an artery 302, according to the above
detailed technique and according to one embodiment. The
probe system 300 comprises a light source 304 for generating
excitation light 306 having a wavelength adapted for absorp-
tion by blood chromophores, an excitation optical fiber 308 to
bring the excitation light 306 near the artery 302 and a col-
lection optical fiber 310 for capturing back-scattered light
from the artery 302. The probe system 300 comprises a light
detector 312 operatively connected to the collection optical
fiber 310 and a signal processor 314 operatively connected to
the light detector 312 for determining a distance 320 to the
artery 302 based on the back-scattered light and on Beer-
Lambert law of light absorption using a value for surrounding
tissue attenuation coefficient (ueft).

FIG. 18 illustrates a spectral absorption probe method for
evaluating proximity to an artery, according to one embodi-
ment. According to processing step 1810, an excitation light
having a wavelength adapted for absorption by blood chro-
mophores is generated. According to processing step 1820,
the excitation light is brought near the artery. According to
processing step 1830, back-scattered light is captured from
the artery. According to processing step 1840, the back-scat-
tered light from the artery is processed for determining a
distance to the artery based on Beer-Lambert law of light
absorption using a value for surrounding tissue attenuation
coefficient (ueft).

As anatomically the artery is part of the IAN bundle, locat-
ing it is almost equivalent to locating the nerve. This approach
can be implemented in a similar package as the LCI/OCT
fiber probe that can fit within the dental drill bit. The blood
pulse can be used to eliminate all background signals via
AC-coupling of the detector or lock-in amplification. The
signal amplitude can then be used to assess the distance from
the probe to the TAN bundle based on Beer-Lambert’s law. A
calibration process is however typically required before use
in situ due to patient’s tissues variability of optical properties.
Notably, the approach relies on the absorption of oxyhemo-
globin, which itself will potentially vary according to blood

10

15

25

30

35

40

45

50

55

65

12

oxygen saturation. As such, the approach might benefit from
the probe being used in conjunction with a pulse oxymeter
that would monitor oxygen saturation levels and thus, indi-
rectly account for variations of the blood attenuation coeffi-
cient. A variation on this approach uses the same spectral
principle as the pulse oxymeter, utilizing two wavelengths
(typically, 660 nm to target deoxyhemoglobin and 850 nm to
target oxyhemoglobin, but generally comprised between 650
nm and 900 nm), as shown in FIG. 6 which illustrates a
drill-integrated IAN sensor 600 based on the NIR spectral
absorption technique. As detailed therein, distance can be
obtained by isolating the distance variable (d) in Equ. 1, but
requires that the surrounding tissues’ attenuation coefficient
(pett) be known through a calibration step. It has to be noted
that such a technique would be limited in the precision of the
measurement, as the signal output results from probing a
large volume with diffused photons and is thus inherently
averaging over that volume, which might skew the output
value of distance. Using AC-coupling and a proper calibration
is key in this approach, as detailed thereafter.

In one embodiment, the calibration for the spectral absorp-
tion technique may be integrated within the standard configu-
ration if a lock-in amplifier (not shown) is used. In such an
embodiment, as illustrated in FIG. 8, an intensity-modulated
light excitation of modulation frequency f (typ. ~100 MHz
range) and modulation depth M1 propagating in the tissues
will suffer phase retardation and reduction of the modulation
depth as a function of the attenuation properties of the tra-
versed medium. The retrieved signal has the same frequency
as the incident one, but due to absorption and scattering in the
medium, it suffers a phase shift A® and an attenuation of the
modulation depth M2 relative to the incident signal. The
change in phase A® and modulation depth AM is correlated to
the average attenuation coefficient and can be used to extract
the parameter pin Equ. 1. This method is known in the art of
Diffuse Optical Tomography. To achieve accurate results,
though, the modulation frequency should be in the range of
about 100 MHz to 500 MHz. Unfortunately, limitations in
current lock-in amplifier electronics make most affordable
conventional devices to operate up to the hundreds of kHz
range.

This issue can be solved by using a heterodyning process-
ing circuit before the lock-in amplifier input, as illustrated in
FIG. 9, using signal mixing with an intermediate frequency
and using principles of Amplitude Modulation to extract the
difference signal. In the illustrated embodiment of a probe
system 400, the light source 402 is driven at high frequency
with a light source driver 404, for example at 200 MHz, to
insure adequate resolution on the extracted values A® and
AM. A local oscillator 406 generates a slightly larger fre-
quency, larger by 50 kHz as a non-limitative example. The
oscillator 406 and the driver 404 are phase-locked by a PLL
circuit 408. Mixing those two signals produces the sum and
difference signals (amplitude modulation) and a low-pass
filter 410 is used to retain only the difference component. The
detection channel 412 operates similarly and a standard, low-
bandwidth dual-phase lock-in amplifier 414 can then be used.

Furthermore, it is known in the art that the positioning of
the probe for calibration (in contact or not with tissues and
other variants) can skew the calibration measurement. The
method might thus need an additional step where the instru-
ment is pre-calibrated with an appropriate optical phantom
(not shown) with known attenuation properties supplied with
the device, before the in-patient calibration step. This way, a
relative value to the phantom properties would be obtained
and should be enough for the proper operation of the sensor.
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With such an approach, the calibration of the device for the
patient’s jaw tissues may be made at the beginning or at an
early phase of the drilling process by the surgeon, before
enabling the sensor, which is of great advantage.

Embodiments and Possible Features of the Optical IAN
Sensor

Different embodiments of the Optical IAN probe system
can be envisioned for both approaches described above. The
following is a short description of each of the potential
embodiments and implementations envisioned:

Standalone Self-Contained Spectral Absorption-Based
Fiber-Probe:

FIG. 10A shows an embodiment wherein the sensor is built
as a standalone fiber optic device 500 contained within a
biocompatible metallic rod 502. The rod 502 contains two
optical fibers 504, 506 (single- or multimode) along its axial
direction. One fiber serves to bring the excitation light within
the tissues while the other captures the back-scattered light.
Fibers 504, 506 run parallel to each other and are separated by
an adequate distance (1-2 mm) to fit into the hole bored by the
dental drill bit (typ. 2 mm dia.). The skilled addressee will
appreciate that the separation between the two fibers 504, 506
should be as large as possible to maximize penetration depth.
Indeed, in back-reflected diffuse optical sensing, the depth of
penetration is increased with source-detector separation. The
skilled addressee will also appreciate that multimode fibers
may be employed to increase light throughput in both chan-
nels. In this embodiment, the fiber probe itself is connected to
the device back-end. As previously mentioned, the excitation
fiber is connected to a light source (either LED, laser or other
source) or multiple light sources each having an appropriate
wavelength for optimized absorption by blood chromophores
(mainly oxy- and deoxyhemoglobin). Typical wavelengths
are around 660 nm and 850 nm. The light source output could
be modulated at a reference frequency in the kHz range. The
collection fiber is connected to an appropriate light detector
such as a photodiode, an avalanche photodiode (APD), a
photomultiplier tube (PMT), a camera or the like. The detec-
tor output signal is either AC-coupled or connected to a lock-
in amplifier operating at the same reference frequency as the
light source modulation. The goal of the modulation signal or
the AC-coupling is to reject background signals coming from
other tissues than the flowing arterial blood. A variation of
this embodiment makes use of a varying input optical power
into the tissue to establish the neurovascular bundle position
relative to the probe based on an intensity threshold approach,
where larger input powers will statistically increase linearly
the number of photons reaching larger depths, thus improving
the chance of detecting some of these photons that might
probe the neurovascular bundle.

Standalone Self-Contained Low Coherence Interferom-
etry-Based Fiber-Probe:

FIG. 10B shows another embodiment similar to the one
shown in FIG. 10A in shape but implementing the OCT
approach. As illustrated, a single fiber 508 can be used for
illumination and collection purposes. Due to the difference in
requirements between OCT and the spectral absorption con-
cept, the fiber probe should be made of one or multiple single-
mode optical fibers to prevent detrimental dispersion and
spatial propagation modes mixing, according to one embodi-
ment. The back-end of the probe utilizes classical OCT con-
figurations, such as time-domain-based, frequency-domain
OCT or swept-source-based implementations, as previously
detailed. In this embodiment, the back-end is entirely fiber-
ized and uses fiber couplers to connect with the probe itself, as
is well-known in the art. In a further embodiment, the probe
forward-looking configuration can be implemented for
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B-mode scanning, by integrating a proximal scanning system
installed in the back-end coupled to a bundle of single mode
optical fibers, or through a distal scanning mechanism inte-
grated into the probe head itself that would use one single-
mode optical fiber.

Drill-Integrated Probe:

Referring again to FIG. 6, any of the described embodi-
ments can be integrated at the center of the drill bit 610 of a
dental surgery drill. The center of a dental drill bit 610 can
have a hollow core 602 to allow for cooling water to circulate
down to the drilling site 604. The fiber probe can be inserted
within this hollow core 602.

Combined OCT/Spectral Absorption Probe:

Such a combined configuration uses the advantages of each
approach. The spectral absorption approach has potentially a
greater detection range, while the OCT approach is more
straightforward and offer potentially better resolution at short
range. A combined sensor probe could thus potentially iden-
tify roughly the position of the AN bundle at a distance with
the spectral absorption mode and then switch to an OCT
approach when close to the IAN (typ. within 1.5 mm). The
sensor construction would require two or three optical fibers
grouped in a bundle. A single-mode fiber would bring the
excitation light. A second single-mode fiber would be used
for OCT light collection, while a third multimode fiber would
be used for the spectral absorption mode light collection
channel. Alternatively, the single-mode excitation fiber could
double-up as the collection fiber for the OCT technique.

Spectral Absorption Fiber Probe with Disjointed Source
and Collection Channels:

FIG. 11 shows an embodiment of a disjointed spectral
absorption IAN sensor 700. In this configuration of the spec-
tral absorption technique, one or multiple excitation optical
fibers 702 are positioned on the side of the gum or jawbone
704, outside of the probe handpiece 706 itself (or the drill bit),
while the detection optical fiber 708 is still integrated in the
probe handpiece 706, within the drilling hole 710 in the bone
704. Such a configuration allows larger separation of the
source and collection channels, which will increase depth
sensitivity of the technique. Indeed, as previously mentioned,
in back-reflected diffuse optical sensing, the depth of penetra-
tion is increased with source-detector separation. Alterna-
tively, the source and collection channels can be reversed,
with the detection being done laterally on the gum and the
illumination being integrated in the drill bit, or probe hand-
piece. In a further embodiment, using multiple optical fibers
built in a linear array may provide refined measurements of
the neurovascular bundle’s position in the jaw.

Use of a Double-Clad Optical Fiber:

FIG. 12 illustrates a double-clad optical fiber-based IAN
sensor handpiece 800 which may be used alternatively to the
use of two optical fibers in the probe. The core 802 of the
double-clad optical fiber 804 is used as the excitation channel
to send light into tissues and the first cladding 806 acts as the
collection channel. In the OCT approach and in one embodi-
ment, the core 802 is built for single mode propagation. The
first clad 806 will typically have a large numerical aperture,
making it ideal for light collection. The second clad 808
insure proper waveguide behavior for the first clad 806. This
approach would benefit especially the OCT technique as the
separation between core and first cladding would probably be
too low for efficient implementation of the spectral absorp-
tion technique.

Combining the Spectral Absorption Probe with a Pulse
Oxymeter in the Technique:

FIG. 13 shows a spectral absorption-based IAN sensor
apparatus 900 that uses an entirely separate pulse oxymeter
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902 operatively connected to a finger 904 of the patient as a
monitor of blood oxygenation variations over the course of
the drilling procedure, to maintain an inline calibration of the
arterial blood absorption properties. In other words, this
embodiment enables to compensate variations of blood opti-
cal properties from the oxygenation levels variation (ASatO2)
to provide more accurate distance measurements, by updating
the device calibration factors in real-time. Indeed, large varia-
tions in the optical properties will skew the sensor distance
measurement. That being said, normal individuals will gen-
erally not see variations in blood oxygenation larger than
~2%, which might well be within the error bar of the distance
measurement.

Developing a B-Mode OCT Technique Using the Drill
Rotation for Scanning:

FIG. 14 shows a AN sensor 1000 using a conical scanning
principle that uses the drill rotation and a beveled double-clad
optical waveguide 1002 that rotates with the drill 1004 in such
a way that the source and collection channels would observe
the tissues in front of the drill tip slightly off-axis. As it should
become apparent to the skilled addressee, this is an alternative
implementation to the standard B-mode scanning technique
that operates along a line in the transverse plane. The drill
rotation would allow a ring in the transverse plane to be
scanned along the light propagation axis, essentially probing
a conical surface within the jaw. The IAN bundle would
intersect this conical surface at two opposite locations. The
signal processor (not shown) of the device 1000 could then
create an image 1006 by “unfolding” the conical surface on a
computer screen 1008, giving the dental surgeon a high reso-
Iution image similar to an ultrasonogram in real-time. The
advantage of this B-mode scanning method is that the IAN
bundle orientation in the transverse plane relative to the drill
axis can be arbitrary. In the other implementations described,
the TAN bundle should lie on the drilling axis, or the axis of
the forward looking probe, to be detected properly. Otherwise
the drill bit might pass beside the nerve and still produce
damage, because the sensor did not “see” the IAN bundle.
Note that with the NIR spectral absorption technique, this
flaw is fairly reduced due to the volume averaging effect
mentioned earlier.

Implement Doppler OCT in the Probe and Use Tissue
Changes or Movement as a Contrast Mechanism:

In addition to using standard OCT in the sensor, this con-
figuration uses the Doppler effect to lock on blood flow.
Doppler OCT is generally used to measure quantitatively
microvasculature blood flow. In the case of this sensor, a
qualitative measurement is enough to locate the IAN bundle.
As such, the implementation of Doppler measurements in the
OCT device would be simpler and cheaper. Experiments were
conducted with Doppler OCT on an ex vivo human jawbone
piece from which the neurovascular bundle was removed and
a tube containing a flowing scattering fluid was connected,
imitating blood flow in the canal. Results have shown that
using the Doppler Effect as part of the spectral absorption
technique might benefit the device.

According to another embodiment, another variant of OCT
data processing that utilizes changes or movement in the
tissue like Doppler OCT, namely speckle variance OCT
[Refs: A. Mariampillai et al., Opt. Lett. 33(13), 1530 (2008);
A. Mariampillai et al., Opt. Lett. 35(8), 1257 (2010)], can be
used to embody the sensor. It proceeds as follow: first, a series
of B-mode images of the same sample section over time is
acquired. Second, for each pixel location the average value
and variance are computed using pixel value of all images at
that same exact location. This process leads to two 2D
images. The first one is made with the pixel average value.
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Therefore, non-zero pixels in that image are those associated
with a stationary/non-moving part of the sample. The second
image is made with the pixel variance values. Thus, non-zero
pixels in that image are associated with the moving/spatially-
varying part of the sample. In a similar fashion to Doppler
OCT, this kind of processing will lead to contrast generation
between hard and soft tissues in movement, or contrast based
on tissue “viscosity”. Results have shown that the fluid may
be identified from the variance image, contrasting with the
bone section. This method could potentially make good usage
of blood flow in the neurovascular bundle.

Use of a Non-Specific Vascular Contrast Agent to Facilitate
Artery Detection:

A vascular contrast agent, such as Indocyanine Green
which is a NIR fluorescent dye approved for clinical use in a
number of indications, can be used to enhance the signal
coming from the artery in the IAN bundle. Injection of a bolus
of ICG into the systemic circulation will momentarily make
the artery in the TAN bundle fluoresce at 830 nm (when
excited at 780 nm) against a non-fluorescent background,
increasing the overall contrast dramatically. If tuned to the
fluorescent wavelength, the spectral absorption sensor tech-
nique will have a much easier time at spotting the AN bundle.
The modulated excitation would equally translate to a modu-
lated fluorescence signal. A difficulty is however that the
device needs to be calibrated at two wavelengths (780 and 830
nm) instead of one. This can be solved by adding a second
light source and operating in the same manner as described
above for calibration at the two wavelengths, before the ICG
injection.

In similar fashion, the various embodiments based on LCI/
OCT can benefit from the potential application of optical
clearing agents at the site of probing. Biocompatible optical
clearing agents, such as fructose, glycerol, propylene glycol,
glucose or mannitol solutions can partially replace the inter-
stitial fluid due to hyperosmotic properties and provide a
refractive index matching medium that reduces scattering due
to a number of cell structures and organelles, thus increasing
the transparency of the tissues to optical wavelengths and
improving the depth penetration.

Dental Drill Integration of the Optical IAN Sensor

Integration of the sensor into a drill bit presents a number of
mechanical challenges, the most important ones being the
rotation speed and how to protect the optical sensor at the drill
tip, without blocking light injection and detection. Dental
drills can rotate at rates up to 20,000 RPM. In typical use for
dental implant surgery, the rotation speed will be in the range
0f 2,000 to 4,000 RPM.

To fit within the hollow core of a drill bit, the optical fiber
assembly should be secured in such a way that the optical
fibers do not come into contact with the rotating inner wall.
The friction at high rotating speeds would most certainly
break the optical fibers. An alternative is to have the fiber
assembly rotate with the drill bit, so that relative positioning
of'the fibers and the inner wall is stationary. FIG. 15A shows
a drill-integrated IAN sensor 1100 rotating with the drill bit
1102 and using an optical fiber rotary joint 1104 for coupling
the optical fibers in the drill head.

FIG. 15B illustrates another alternative drill integrated
TAN sensor 1150 wherein a rod-like optical waveguide 1152
is built as an integral part of the drill bit 1154 with a non-
contact optical coupler 1156 from the optical fibers 1158
coming from the back-end in the drill head. The skilled
addressee will note that having a rotating handpiece requires
that the probe design have circular symmetry, which is not
achievable with a two-fiber design as the one shown in FIG.
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10A. In this last case, the handpiece should remain stationary
with the drill bit rotating around the sensing assembly, as
previously detailed.

In a further embodiment, in order to prevent introduction of
organic tissues and debris within the hollow core that could
clog it and prevent proper function of the sensor, the tip of the
drill bit may be plugged with a hard and transparent material
(not shown), so it can withstand the large frictions of the
drilling process while allowing light to pass through. Dia-
mond or zirconium crystals would potentially be the best
materials, due to their exceptional hardness and transparency
in the visible and NIR spectral window but the skilled
addressee will appreciate that other arrangements may be
considered.

Extensions of the Technology to Other Applications

The described invention could also be used in other fields
of surgery where proximity to a neurovascular bundle embed-
ded in hard tissues, such as bone, must be assessed during a
surgical activity such as drilling or cutting. It can also be used
to identify the presence of voids inside tissue structures, such
as sinus cavities in the cranial anatomy, during drilling pro-
cedures. As another example of application, a LCI/OCT-
based probe could also be envisioned as a bone mapping tool
in oral surgery to determine the gums thickness at specific
locations, as long as the device detection range is sufficient.

The embodiments described above are intended to be
exemplary only. The scope of the invention is therefore
intended to be limited solely by the appended claims.

We claim:

1. A spectral absorption probe system for determining a
distance between a tissue layer including an artery and a
surgical drill tip during a procedure, comprising:

a light source of the spectral absorption probe system for
generating excitation light having a wavelength config-
ured for absorption by blood chromophores;

an excitation optical channel of the spectral absorption
probe system to bring said excitation light near the tissue
layer and the artery;

a collection optical channel of the spectral absorption
probe system, distinct from said excitation optical chan-
nel, for capturing diffused back-scattered light from said
tissue layer and the artery, where said diffused back-
scattered light is modulated by blood flow dynamics in
said artery, said blood flow dynamics being a periodic
change in blood volume in said artery due to a cardiac
cycle;

a light detector of the spectral absorption probe system
operatively connected to said collection optical channel
for detecting said diffused back-scattered light modu-
lated by blood flow dynamics and for generating an
oscillating signal, a frequency of said oscillating signal
being related to said periodic change; and

a signal processor of the spectral absorption probe system
operatively connected to said light detector for deter-
mining the distance between the tissue layer including
the artery and the surgical drill tip based on said back-
scattered light using an amplitude of said oscillating
signal and a value for surrounding tissue attenuation
coefficient;

wherein at least one of the excitation optical channel and
the collection optical channel is included in an optical
fiber and the optical fiber is integrated within a hollow
core of a surgical drill bit including the surgical drill tip.

2. The spectral absorption probe system as claimed in
claim 1, further comprising a biocompatible metallic rod
surrounding said excitation optical channel and said collec-
tion optical channel.
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3. The spectral absorption probe system as claimed in
claim 1, wherein said excitation optical channel and said
collection optical channel are each provided in a single
double-clad optical fiber with a fiber core of said double-clad
optical fiber bringing said excitation light near said tissue
layer and a first clad of said double-clad optical fiber captur-
ing said back-scattered light from said tissue layer.

4. The spectral absorption probe system as claimed in
claim 1, wherein said signal processor is further configured to
determine said distance to said tissue layer between 1 mm and
5 mm.

5. The spectral absorption probe system as claimed in
claim 1, wherein the light source is selected from a group
consisting of a LED, a laser and a set of light source units.

6. The spectral absorption probe system as claimed in
claim 1, wherein the wavelength of the light source is com-
prised between 650 nm and 900 nm.

7. The spectral absorption probe system as claimed in
claim 1, further comprising an additional light source having
a wavelength configured for absorption by blood chro-
mophores, the wavelengths of the light source and of the
additional light source being each comprised between 650 nm
and 900 nm.

8. The spectral absorption probe system as claimed in
claim 1, wherein the light detector is selected from a group
consisting of a photodiode, an avalanche photodiode (APD),
a photomultiplier tube (PMT) and a camera.

9. The spectral absorption probe system as claimed in
claim 1, further comprising a calibration unit having a pulse
oxymeter for monitoring oxygen saturation levels to maintain
an inline calibration of arterial blood absorption properties.

10. The spectral absorption probe system as claimed in
claim 1, wherein said signal processor is further configured to
determine said surrounding tissue attenuation coefficient that
is determined according to absorption and scattering in sur-
rounding tissue of a calibration excitation signal.

11. The spectral absorption probe system as claimed in
claim 1, wherein the signal processor comprises a lock-in
amplifier and a heterodyning processing circuit connected
thereto.

12. The spectral absorption probe system as claimed in
claim 1, wherein the light detector is alternating current (AC)
coupled to the signal processor.

13. A combined spectral absorption and low coherence
interferometry probe system for determining a distance
between to a tissue layer including an artery and a surgical
drill tip during a procedure, comprising:

a light source of the combined spectral absorption and low
coherence interferometry probe system for generating
excitation light having at least one wavelength config-
ured for absorption by blood chromophores and low
coherence;

an excitation optical channel of the combined spectral
absorption and low coherence interferometry probe sys-
tem to bring said excitation light near the tissue layer and
the artery;

a first collection optical channel of the combined spectral
absorption and low coherence interferometry probe sys-
tem, distinct from said excitation optical channel, for
capturing diffused back-scattered light from said tissue
layer and the artery, where said diffused back-scattered
light is modulated by blood flow dynamics in said artery,
said blood flow dynamics being a periodic change in
blood volume in said artery due to a cardiac cycle;

a first light detector of the combined spectral absorption
and low coherence interferometry probe system opera-
tively connected to said first collection optical channel
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for detecting said diffused back-scattered light modu-
lated by blood flow dynamics and for generating an
oscillating signal, a frequency of said oscillating signal
being related to said periodic change;

a first digital signal processor of the combined spectral
absorption and low coherence interferometry probe sys-
tem operatively connected to said first light detector for
determining the distance between the tissue layer and
the surgical drill tip based on said diffused back-scat-
tered light using an amplitude of said oscillating signal
and a value for surrounding tissue attenuation coeffi-
cient;

a low coherence interferometry sub-system of the com-
bined spectral absorption and low coherence interferom-
etry probe system operatively connected to the excita-
tion optical channel;

including a second collection optical channel, distinct from
said first collection optical channel, for capturing low-
coherence back-scattered light from said tissue layer and
the artery, a beam splitter, a reference mirror and a sec-
ond light detector, distinct from said first light detector,
operatively connected to said second collection optical
channel;

a second signal processor operatively connected to said
low coherence interferometry subsystem for determi-
nant the evaluating a distance between said tissue layer
including the artery and the surgical drill tip based on
said low-coherence back-scattered light received by said
second collection optical channel, said first digital signal
processor and said second signal processor being pro-
vided by one of distinct processors and a common pro-
cessor;

wherein at least one of the excitation optical channel and
the collection optical channel is included in an optical
fiber and the optical fiber is integrated within a hollow
core of a surgical drill bit including the surgical drill tip.

14. The combined spectral absorption and low coherence
interferometry probe system as claimed in claim 13, wherein
the excitation optical channel is provided by a first single
mode fiber and further wherein the second collection optical
channel is provided by a second single mode fiber for OCT
mode light collection and wherein the first collection optical
channel is provided by a multimode fiber for spectral absorp-
tion mode light collection.

15. The combined spectral absorption and low coherence
interferometry probe system as claimed in claim 13, further
comprising a forward-looking transverse scanner enabling
B-mode imaging.

16. The combined spectral absorption and low coherence
interferometry probe system as claimed in claim 13, wherein
the excitation optical channel and the second collection opti-
cal channel are each provided by a single fiber.

17. A spectral absorption method for determining a dis-
tance between a tissue layer including an artery and a surgical
drill tip during a procedure, comprising:

generating an excitation light by a light source of a spectral
absorption probe system having a wavelength config-
ured for absorption by blood chromophores;

bringing said excitation light by an excitation channel of
the spectral absorption probe system near the tissue
layer and the artery;

capturing by a collection channel of the spectral absorption
probe system diffused back-scattered light from said
tissue layer and the artery, where said diffused back-
scattered light is modulated by blood flow dynamics in

20

35

40

45

50

55

60

65

20

said artery, said blood flow dynamics being a periodic
change in blood volume in said artery due to a cardiac
cycle;

detecting by a light detector of the spectral absorption

probe system said diffused back-scattered light modu-
lated by said blood flow dynamics;

generating by the spectral absorption probe system an

oscillating signal, a frequency of said oscillating signal
being related to said periodic change; and

processing by a signal processor of the spectral absorption

probe system said diffused back scattered light from said
tissue layer and the artery for determining the distance
between the tissue layer including the artery and the
surgical drill tip, said processing including using an
amplitude of said oscillating signal and a value for sur-
rounding tissue attenuation coefficient,

wherein at least one of the excitation optical channel and

the collection optical channel is included in an optical
fiber and the optical fiber is integrated within a hollow
core of a surgical drill bit including the surgical drill tip.

18. The spectral absorption method as claimed in claim 17
further comprising evaluating proximity to an inferior alveo-
lar nerve in situ, said tissue layer including said inferior
alveolar nerve.

19. The spectral absorption method as claimed in claim 17,
further comprising monitoring oxygen saturation levels to
maintain an inline calibration of arterial blood absorption
properties.

20. The spectral absorption method as claimed in claim 17,
further comprising determining said surrounding tissue
attenuation coefficient according to absorption and scattering
in surrounding tissue of a calibration excitation signal.

21. The spectral absorption method as claimed in claim 17,
wherein said diffused back-scattered light is captured angu-
larly and at a given distance with respect to said brought
excitation light.

22. The spectral absorption method as claimed in claim 17,
further comprising using a vascular contrast agent.

23. A combined spectral absorption and low coherence
interferometry method for determining a distance between a
tissue layer including an artery and a surgical drill tip during
a procedure, comprising:

generating by a light source of the combined spectral

absorption and low coherence interferometry probe sys-
tem an excitation light having at least one wavelength
configured for absorption by blood chromophores and
low coherence;

bringing said excitation light by an excitation optical chan-

nel of the combined spectral absorption and low coher-
ence interferometry probe system near the tissue layer
and the artery;

capturing by a first collection optical channel of the com-

bined spectral absorption and low coherence interferom-
etry probe system diffused back-scattered light from
said tissue layer and the artery, where said diffused back-
scattered light is modulated by blood flow dynamics in
said artery, said blood flow dynamics being a periodic
change in blood volume in said artery due to a cardiac
cycle;

detecting by a first light detector of the combined spectral

absorption and low coherence interferometry probe sys-
tem said diffused back-scattered light modulated by
blood flow dynamics;

generating by a digital signal processor of the combined

spectral absorption and low coherence interferometry
probe system an oscillating signal, a frequency of said
oscillating signal being related to said periodic change;
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processing by the digital signal processor said diffused
back-scattered light for determining a first distance
between the tissue layer including the artery and the
surgical drill tip, said determining said distance includ-
ing using an amplitude of said oscillating signal and a
value for surrounding tissue attenuation coefficient;

capturing by alow coherence interferometry sub-system of
the combined spectral absorption and low coherence
interferometry probe system low-coherence back-scat-
tered light from said tissue layer and the artery;

performing by the low coherence interferometry sub-sys-
tem interferometry between said excitation light and
said low-coherence back-scattered light for providing an
interference signal; and

processing by the digital signal processor said interference
signal for determining a second distance between the
tissue layer including the artery and the surgical drill tip

wherein at least one of the excitation optical channel and
the collection optical channel is included in an optical
fiber and the optical fiber is integrated within a hollow
core of a surgical drill bit including the surgical drill tip.
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